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SYNOPSIS 

The adsorption and desorption kinetics of water-soluble associative polymers with different 
molecular weights on crystals of titanium dioxide [Ti0,(001)] have been studied by ellip- 
sometry. The model water-soluble associative polymers used in the kinetic study are nonionic 
polyurethanes based on polyethylene glycol, and have average molecular weights of 17,000, 
51,000, and 100,000 with a C16H33 linear alkyl group on each end of the molecule. I t  is 
shown that the adsorption and desorption kinetics over a wide range of polymer concen- 
trations is governed by: (1) the kinetics of adsorption and desorption of polymer chains a t  
the interface, (2) the kinetics of adsorption and desorption a t  the interfaces as well as 
simultaneous diffusion in the adsorbed layer, and/or ( 3 )  diffusion in the adsorbed layer. 
The existence of regimes (I), (2), and ( 3 )  of the adsorption and desorption kinetics are 
justified by using the experimental data for the adsorption and desorption of water-soluble 
associative polymers with different molecular weights. I t  is shown that the adsorption is 
an irreversible process for the strongly convex adsorption isotherms. Equations were derived 
to calculate: (a) the rate constant for polymer adsorption and desorption processes, (b) the 
coefficient of diffusion, (c) the activation energy of diffusion in the adsorbed layer, and (d) 
the time needed to attain the equilibrium states for the adsorption and desorption processes 
by using adsorption and desorption kinetics data with associative polymers of different 
molecular weights a t  different polymer concentrations. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The study of adsorption and desorption processes 
of polymers on solid interfaces is very important to 
comprehend the resulting structures of the adsorbed 
films (and/or adsorption layers), as well as their 
kinetics of formation are essential in order to find 
ways of controlling them. The kinetics of adsorption 
and desorption on a planar surface has been treated 
theoretically and experimentally by a number of in- 
vestigator~.'-'~ The suggestion that the diffusion 
process of the solute to surface was the cause of the 
alternation of adsorption and desorption with time 
was made by Millner,' and described by Langmuir 
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and Schafer.' Diffusion-controlled adsorption ki- 
netics has been analyzed theoretically by Ward and 
Tordai3 by using an integral equation. Delay, Fike, 
and Hansen 5-7 have found analytical solutions in 
the form of three terms for the short-time approx- 
imation and in the form of the first term for the 
adsorption process obeying the Langmuir adsorption 
isotherms. Miller and Wasan 12-14~16 analyzed the dif- 
ferent numerical schemes and showed that numer- 
ical solutions of the nonlinear equation describing 
the adsorption process may be obtained only by 
making sets of simplified assumptions even in the 
case in which the diffusion coefficient is constant. 
We examined the analytical approaches and the 
simplifying assumptions of the earlier investigations. 
Despite several attempts, there was no treatment of 
the problem that achieved a general analytical ap- 
proach for solving the nonlinear equations for the 
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adsorption and desorption processes without making 
sets of simplifying assumptions. Therefore, the mo- 
tivations for this article are: (a )  to develop a theory 
for the adsorption and desorption processes obeying 
arbitrary adsorption isotherms over a wide range of 
time, ( b )  to estimate the effects of the adsorption! 
desorption kinetics and the diffusion in the adsorbed 
layer in an analytical form for the short-time and 
long-time approximations, and ( c )  to apply the re- 
laxation function [ see eqs. (6a) and (6b) ] in order 
to find the parameters characterizing the adsorption 
and desorption processes. The effect of adsorption 
and desorption kinetics on the adsorption and de- 
sorption processes may be also ~ i g n i f i c a n t . ~ * * ~ ~ ' ~ - ~ ~  
The kinetics of the formation of adsorbed polymer 
layers can be separated into three  stage^.^^^^^-^^^^^^^^ 
( 1 ) the kinetics of adsorption and desorption of the 
polymer molecules on the bare surface, ( 2 )  the ki- 
netics of adsorption and desorption of the polymer 
molecules onto the interface and simultaneous dif- 
fusion of polymer molecules within the adsorbed 
layer, and ( 3)  diffusion of the polymer molecules in 
the adsorbed layer. The first process (1) occurs for 
short times or at low concentrations of polymer in 
the adsorbed layers. This process is governed by the 
kinetics of adsorption and desorption. Therefore, 
this process is called kinetic-controlled adsorption 
and desorption. The relaxation time (or the time 
scale), characteristic of this process, is relatively 
small (on the order of tens or 100 s)  . The second 
process (2) is governed simultaneously by the ki- 
netics of adsorption and desorption, and diffusion. 
Therefore, this process is called kinetic-diffusion- 
controlled adsorption and desorption. The third 
process ( 3 )  takes place for long times or high con- 
centrations of polymer in the adsorbed layer when 
interaction between the polymer molecules are es- 
sential. This process ( 3 )  is governed by diffusion 
and is called the diffusion-controlled adsorption 
and desorption. This process has relaxation times 
(or the time scale) on the order of hours for ad- 
sorption and days for desorption. The relaxation 
times of' all three adsorption and desorption re- 
gimes depend on: ( a )  the molecular weights of the 
polymer molecules, ( b )  the structure of the ad- 
sorbed layer, ( c )  the surface coverage, and ( d )  in- 
teraction between molecules of polymer, solvent, 
and adsorbent. 

A theory of kinetic-diffusion-controlled adsorp- 
tion and desorption has been developed for linear 
and nonlinear adsorption and desorption isotherms. 
Equations are derived to calculate the relaxation 
times and the time needed to attain the equilibrium 
states for both the kinetic-controlled adsorption and 
diffusion-controlled adsorption and desorption. 

We have reported earlier on the adsorption ki- 
netics and dynamics of polymers onto particulate 
surfaces of titanium dioxide.26 In this article, new 
results are presented on the adsorption kinetics of 
polymers onto a planar surface of titanium dioxide 
single crystal. For this purpose, an optical technique 
based on the use of e l l i p s ~ r n e t r y ~ ~ ~ ~ ~  have been used, 
which allows measurements of the time-dependent 
adsorbed polymer concentrations and the adsorbed 
layer thickness during the polymer adsorption pro- 
cess at  an interface and to calculate the equilibrium 
adsorption, the rate of polymer adsorption, the dif- 
fusion coefficient, and the activation energy for dif- 
fusion in the adsorbed layer. 

EXPERIMENTAL 

Titanium Dioxide Crystal 

The titanium dioxide crystals [ Ti02 (001 ) ] were 
purchased from Commercial Crystal Laboratories, 
Inc. A glass cell, shown in Figure 1, was used to 
measure the values for the refractive index of the 
titanium dioxide crystal (001 ) in DDI (distilled- 
deionized) water and polymer solutions during the 
adsorption and desorption processes at room tem- 
perature. The optical model, shown in Figure 2,  was 
used to calculate: ( a )  the thickness of the adsorbed 
layer, ( b )  the refractive index of the adsorbed layer, 
( c )  the weight fraction of polymers in the adsorbed 
layer, and ( d )  the adsorption of polymers onto a 
planar surface. After adsorption runs lasting 110 
min, desorption runs were made by quickly replacing 
the polymer solution with DDI water. Ellipsometric 
measurements were performed with a Rudolph Auto 
El ellipsometer, using a He/Ne laser, with X = 632.8 
nm, and at  an incident angle of 70'. 

Characterization of the Surface of Titanium 
Dioxide Crystal 

The morphology of the titanium dioxide crystal 
[ TiOz) ( 001 ) ] was determined using a Park Scien- 
tific Instruments (Sunnyvale, CA) Autoprobe CP 
contact-mode force microscope (AFM) using an ul- 
tralever and scanning at 4 kHz with constant force 
in air. The image shows a uniform pattern with 
heights of about 0.4 nm. 

Polymers 

The model water-soluble associative polymers used 
in the kinetic study were obtained from the Union 
Carbide Company. These polymers are nonionic 
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Figure 1 
crystal (001). 

The glass cell to measure the adsorption onto a planar of the titanium dioxide 

polyurethanes based on poly (ethylene glycol) and 
have average molecular weights of 17,000, 51,000, 
and 100,000 with a C16H33 linear alkyl group on each 
end of the molecule. 

Theory of Kinetic-Diffusion-Controlled 
Adsorption and Desorption Processes 

The adsorption and desorption processes take place 
in a thin layer at  a planar interface. In the general 
case, these processes are governed by the kinetics 
of adsorption and desorption of polymer molecules 
at  the interface and diffusion of these molecules into 
the adsorbed layer. Therefore, the adsorption and 
desorption processes on a planar surface may be de- 
scribed in a one dimensional model as:21*25 

with the initial boundary conditions for the adsorp- 
tion (lc) and the desorption (Id) processes, respec- 
tively: 

t 
I 
I TiOz, n*=nz-ikz 

Figure 2 
onto a planar of the titanium dioxide crystal (001). 

The optical model to calculate the adsorption 

where c(x,  t )  is the concentration of polymer at a 
coordinate x normal to the surface ( x  = 0), c(0, t )  is 
the surface concentration on the interface, c, is the 
bulk concentration, D(c)  is the diffusion coefficient 
in the bulk, D[c(O, t ) ]  is the diffusion coefficient in 
the adsorbed layer, r is the adsorption on a planar 
surface, r; is the maximum adsorption when the 
surface coverage, 8, is equal to unity, Pd and Kdes 
are the rate constants for adsorption and desorption 
processes, respectively, m and p are the parameters 
of adsorption and adsorption kinetics. The inho- 
mogeneous adsorption model in the form of eqs. (1) 
is complex and it is reasonable to consider the sim- 
plified homogeneous adsorption model, which may 
be written in the form of eqs. (lb), (2a), and (2b) 
with the initial boundary conditions (lc) and (Id): 

where Do is the diffusion coefficient in the bulk, D(8) 
is the diffusion coefficient in the adsorbed layer, 8 
(=I'/r;) is the fraction of the tot.al surface coverage. 
For the simplified adsorption model, the diffusion 
coefficient, Do, in the bulk is assumed to be constant. 
The simplified adsorption model in the form of eqs. 
(2) has been already discussed by Ravera and co- 
workers;21 the authors interpreted the diffusion coef- 
ficient, D(8),  in the framework of an interfacial po- 
tential barrier in the adsorbed layer. Inhomogenei- 
ties within the adsorbed layer can be estimated by 
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using the homogeneous model with the diffusion 
coefficient, D(8), depending on the interaction be- 
tween adsorbate molecules in the adsorbed layer and 
the architecture of the adsorbed layer. The equations 
of adsorption and desorption isotherms are calcu- 
lated from eq. ( Ib)  when equilibrium takes place, 
i.e., dF/dt = 0. The Henry (3a), the Langmuir (3b), 
and the Freundlich (312) adsorption isotherms are 
given by: 

r (c )  = K ~ C ,  

where Kp = Kad/Kdes, m = 1,p 

r (c)  = P,K,c/(l + K,c), 

0 in eq. ( lb )  (3a) 

where rn = 1 , p  = 1 in eq. ( lb )  (3b) 

u c )  = ( K p ) ~ r ~ m ,  

where 0 < m I 1, p = 0 in eq. ( lb )  (3c) 

where Kp and (K,)F, are the constants of adsorption 
equilibrium. By using the Laplace t r a n s f ~ r m , ~ ~ ~ ~ ~  the 
system of eqs. (2a) and (2b) may be reduced to the 
system of integral-differential equations given by 
eqs. (4a) and (4b) for the adsorption process and 
eqs. (5a) and (5b) for the desorption process as: 

- s,' (4D,/~)'/~cc(O, t - p)dp'/' (4a) 

where 

g ( 0 )  = D(0)/D,,  D, = D(O = 0), 

g(0 )  is the dimensional function taking into account 
the dependence of the diffusion coefficient in the 
adsorbed layer on the surface coverage and y[O(t)]  
is the function taking into account the fact that the 
diffusion coefficient in the adsorbed layer depends 
on the surface coverage 0; y[O(t)] = r(t) when the 
diffusion coefficient in the adsorbed layer does not 

depend on the surface coverage (i.e., g = 1). To de- 
scribe the adsorption process over a wide range of 
times, it is reasonable to use eq. (4a) for short times, 
and eq. (4b) for long times. To describe the desorp- 
tion process over a wide range of times, it is reason- 
able to use eq. (5a) for short times, and eq. (5b) for 
long times. The solution of the system of eqs. (4) 
and (5) over a wide range of times may be found by 
using the relaxation function F( t ) ,  which may be 
written in the following form for the adsorption 
Pd(t) and the desorption F'""(t) processes, respec- 
tively, as:19920925 

where trel and t:,, are the relaxation times charac- 
terizing the rate of the adsorption and desorption 
processes, respectively, a t  the interface and in the 
adsorbed layer, n is the slope of the relaxation func- 
tion Pd(t) vs. log(t), and n* is the slope of the re- 
laxation function Ps(t) vs. log(t). 

Kinetic-Controlled Adsorption 

For short times or low polymer concentrations the 
adsorption process may be governed by the adsorp- 
tion kinetics in the form of eq. (lb). For the Henry 
adsorption kinetics with m = 1 andp  = 0, the relative 
adsorption expressed in terms of the relative time 7 

= t/t ,  is: 

- a2exp(b & ) e r f ~ ( b ~ ~ ' / ~ )  (7b) 

where 

and where: 

is the error f u n c t i ~ n . ~ ~ . ~ ~  
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The function exp(z2)erfc(z) is a complex variable, 
when p > 1, and may be calculated from the pub- 
lished tables.29 The relaxation function of P d ( T )  vs. 
log(7) for different values of the parameter @ is 
shown in Figure 3. Applying eq. (7a) for short times, 
the approximations of the first and third order, re- 
spectively, are given by: 

where ( t:el)ki, is the relaxation time characterizing 
the rate of adsorption kinetics and (t:el)dif( =to) is the 
relaxation time characterizing the rate of the ad- 
sorption process because of diffusion. From Figure 
3 and eqs. (8a) and (8b) it follows that for the Henry 
adsorption kinetics, the relative adsorption, r(t)/ 
ro, is controlled by the rate of adsorption kinetics, 
i.e., Kadc0/T,,. For long times the approximations of 
the first and third order, respectively, are given by: 

According to eqs. (6a), (8a), and (9a) for the 
Henry adsorption kinetics, the adsorption may be 
described in the form of two straight lines of Pd(7) 

vs. log(T), as shown in Figure 3. 

where t& and 7,*, are the dimensional and dimen- 
sionless critical times, respectively. Now we consider 
the critical times, 7Zrr, for different values of the rate 
of the adsorption kinetics, Pd. If the rate of the 
adsorption kinetics is infinite (Pd + a), then @ 
= 0, 7zr = 0, and no = 0.5, according to eqs. (8b), 
(lOa), and (lob). As shown in Figure 3, in this case 
the adsorption process is governed by the diffusion 

- 3i HENRY ADSORPTION KINETICS 
I Kinetic-Diffusion-Controlled Adsorption c, 

0 

Figure 3 The time dependence of the relaxation func- 
tion Pd(7) vs. log(7) for the kinetic-diffusion-adsorption 
obeying the Henry adsorption kinetics for different values 
of the parameter (3 [ p  = 4/(Kd'"t,)]. For p = 10, the slope, 
n, of a straight h e  of Pd(7) vs. log(T), is equal to no = 1.0 
for the kinetic-controlled adsorption process (0 I 7 

5 T:,, = 15.8t0), and equal to n, = 0.5 for the diffusion- 
controlled adsorption process (7  2 72).  

over a wide range of time. If @ = 0.5 and @ = 10, 
then from eq. (lob) the critical times, T&, are to be 
0.05 and 19.6, respectively, as shown in Figure 3. If 
the rate of adsorption kinetics is finite ( p  # O), then 
for short times (0 I T I T,*,) the adsorption process 
is governed by the adsorption kinetics. The slope, 
nor of the straight line [the relaxation function, Pd(7) 

vs.  log(^)] is to be 1.0, as shown in Figure 3. For 
long times (7 2 (TC: )  the adsorption process is gov- 
erned by the diffusion. The slope, n,, of the straight 
line [the relaxation function, Pd(7) vs.  log(^)] is to 
be 0.5, as shown in Figure 3. For the kinetic-con- 
trolled adsorption obeying the Henry, Langmuir, and 
Freundlich adsorption kinetics over short times, the 
relative adsorption is given by: 

where: 

From eqs. (6a) and ( l l a )  it follows that the time- 
dependence adsorption for short time periods for 
the kinetic-controlled model may be described by a 
straight line as: 

where no = 1.0, t:el = ~, / [C:(I ' ; )~P~] ,  and so 
= -log(tFe1) is the shift of the straight lines of the 
relaxation function Pd(t) vs. log(t) for short times. 



236 FILIPPOV, SILEBI, AND EL-AASSER 

Eq. ( l l a )  may be used to find the adsorption rate 
constant from the experimental data. 

It is of interest to analyze different stages of the 
adsorption process obeying arbitrary adsorption 
isotherms from the phenomenological point of view. 
For short times (t  + 0 ) ,  from eq. ( l l a )  the rate of 
the adsorption process is to be ( l/t:eI); therefore, 
the resistance, &in, because of the adsorption ki- 
netics equals (t:el). For short times ( t  + 0 ) ,  from eq. 
(15b) the rate of adsorption process is to be 2/ 
[7r(t0t)'/']; therefore, the resistance, &if, because of 
the diffusion equals ( ~ / Z ) ( t ~ t ) ' ~ ' .  The resistance, 
Rad.proo for overall adsorption process is equal to (&in 

+ Zdi f ) .  From the previous analysis, it follows that 
for short times ( t  + 0) Zad.proc N &in, since &in 

% &if. Thus, for short times the adsorption process 
are governed by the adsorption kinetics. The critical 
time, t*cr, when resistances of adsorption because of 
the adsorption kinetics and the diffusion are equal 

= &if), is given by: 

From the previous analysis it follows that the ad- 
sorption process is governed by the adsorption ki- 
netics for short times (0 5 t I t*cr) and is governed 
by the diffusion at t 2 t,,,. For intermediate times, 

intermediate times, the adsorption process is gov- 
erned by the adsorption kinetics and diffusion si- 
multaneously. For long times ( t  + c ~ ) ,  Z k i n  4 &if, 

therefore Zad.proc N &if. Thus, for long times, the 
adsorption process is governed by the diffusion. 

Z k i n  - Zdi f ,  therefore Zad.proc = Z k i n  + Zdi f .  Thus, for 

Diff usion-Controlled Adsorption 

The adsorption process is governed by diffusion of 
adsorbed molecules in the adsorbed polymer layer 
when the rate of adsorption or desorption are infi- 
nite, i.e., d r / d t  = 0. In this case, the adsorption pro- 
cess is described by using eq. (4a). In the simplest 
case, when the diffusion coefficient is constant [D(8) 
= Do = constant; g(8) = 13 and the equilibrium ad- 
sorption obeys the linear Henry eq. (3a), the relative 
adsorption and the relative surface concentration 
expressed in terms of the relative time 7 = t / to are: 

where G(7) = 1 - exp(~)erfc(~l/'), to = (K,)'/D,. 
For high adsorbed concentrations of polymer, the 

diffusion coefficient, D(O), in the adsorbed layer de- 
pends on the fraction of the total surface coverage 
a d 8  

where Q is the activation energy for the diffusion 
process, characterizing the interaction of the ad- 
sorbed molecules in the adsorbed layer, 8 is the frac- 
tion of the total surface coverage, R is the universal 
gas constant, and T is the absolute temperature. 

Now we consider the case when the adsorption 
isotherms are nonlinear and the diffusion coefficient 
in the adsorbed layer is variable. For short times, 
and applying the Langmuir adsorption isotherms, 
the relative surface concentration and the relative 
adsorption are given, respectively, by: 

c(0 ,  7) /c0  = (47/7r)"'/(l -k b) 

- ~ [ l  - 4b(l - a/2)/7r]/(l + b)' 

+ 473/2~-1/2{ [ l  - 4b(l - aP)/.rrl 
X [l - 3b(l - a/2)]/3 

- 2b2(1 + a + a ' / 6 ) / ~ }  

ryT)/r0 = (47/T)1/2 - 7(1 + ~ ~ b / ~ ) / ( i  + b) 

+ 473/2[37r'/2(1 + b)']-' 

X { [l - 4b(l - a / 2 ) / ~ ] ( 1  + 3ab/2) 

where 

where I'$ is the maximum adsorption on a planar 
surface, b = Kpco is the parameter for the Langmuir 
adsorption isotherm, and Kp is the equilibrium con- 
stant in the equation for the Langmuir adsorption 
isotherm. 

For long times ( t  --* a), and applying arbitrary 
adsorption isotherms from eq. (4b), we find the 
asymptotic solutions for the relative surface con- 
centration, c( 0, t)/c,, and the relative adsorption, 
I'(t)/r0, in the following form: 

where 
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and the parameter of a,, is: 

1 (for linear isotherms) 

1/(1 + b) (for the Langmuir isotherms) a, = I m (for the Freundlich isotherms) 

Figure 4 shows the relaxation function Pd(7) for 
the Langmuir adsorption isotherm. From eqs. (15) 
and (16), and the results shown in Figure 4, it follows 
that the time-dependent adsorption for the diffu- 
sion-controlled model may be described over a wide 
range of time by using the three straight lines as: 

n,log(t) + s,, no = 0.5, 

so = -log(tYel), 0 I t I tcrl 

P d ( t )  = nmidlog(t) f Smid, tcrl  5 t 5 tcr2 (17a) 

n,log(t) + s,, 

S ,  = log(tgl), n, = 0.5, t 2 tcrz 1 
where so, s,;d, and s ,  are the shift of the straight 
lines of the relaxation function Pd(t) vs. log(t) for 
short, intermediate, and long times, respectively. 
The critical times, tcrl and tcr2, are given by: 

From the analysis of eqs. (15) through (17), the 
slope, nm,d, and the shift, S,id, are equal to: 

The time-dependent diffusion-controlled adsorp- 
tion may be described for arbitrary adsorption iso- 
therms by using eqs. (17) over a wide range of times. 

Next, we consider how the adsorption, r(t), may 
approach the equilibrium state ro. Strictly speaking, 
this equilibrium state may be reached at  infinitely 
long times, i.e., with asymptotic t + co. However, 
if we reduce the range of equilibrium amount of ad- 
sorption value by some relative value E ( t  --* o), i.e., 
if we take the following ranges of quasi-equilibrium 

T c r 1  I 17cr2 
-3, , I I I I I ,  I ,  , , , , I , ,  II, , , 8, , , , , , , , , , , , / , , , , ,  

-4  -2 0 
 LOG(^) 

Figure 4 The time dependence of the relaxation func- 
tion Fd(7) vs. log(7) for the diffusion-adsorption process 
obeying the Langmuir adsorption isotherms for the pa- 
rameter b = 10 ( b  = K,c,): for short times: n, = 0.5, 0 I 7 

5 rerl, T , , ~  = O.18t0; for intermediate times: nmid = 2.8, T , , ~  

- < 7 I T , , ~ ,  T , , ~  = 2.3t0; and for long times: n, = 0.5, r 
2 7,,2. 

adsorption (1 - c)I',, then the quasi-equilibrium 
state becomes realizable for finite times. 

From eq. (16a) for arbitrary adsorption isotherm, 
the time ttd, when the adsorption, I'(ta,), reaches 
the quasi-equilibrium state, (1 - e)J?,, is given as: 

For the strong convex adsorption isotherms, 
(a,  --* 0), the equilibrium state, I?,, is approached in 
a time of 7rt0/4. From eq. (18a) for the Langmuir 
adsorption isotherm we write: 

t?! = t,/{T[E(l + b)]2} + 7rt,/4 

= (1 - 8)2to/(7rt2) + at,/4 (18b) 

where 8 = I'/I'% is the surface coverage. From eq. 
(18b) it follows that the time, t:d, depends on the 
surface coverage 8. 

Kinetic-Controlled Desorption 

For short times the desorption process may be gov- 
erned by the desorption kinetics in the form of eq. 
(lb). In the simple case, when the desorption process 
obeys the linear Henry kinetics given by eq. (Ib) 
with m = 1 a n d p  = 0, the relative surface concen- 
tration and the relative desorption expressed in 
terms of the relative time 7 = t/to are given by: 

where G*(7) is found from eq. (7a). From eq. (5), the 
relative desorption are given for short and long 
times, respectively, by: 



238 FILIPPOV, SILEBI, AND EL-AASSER 

where t Y  (= l/Kd"") is the relaxation time for short 
times for the linear desorption isotherm and tFey 
(=to/*) is the relaxation time for long times. From 
eqs. (6b) and (ZO), it follows that the desorption pro- 
cess is controlled by the desorption kinetics for short 
times and diffusion for long times. For arbitrary de- 
sorption isotherms over short times, the relative de- 
sorption is given by: 

where 

is the relaxation time at  short times for arbitrary 
desorption isotherms. 

Now we consider the relaxation function Fd""(t). 
According to eqs. (6b), and (21), for arbitrary de- 
sorption isotherms, the relaxation function +( t )  
for short times (t  + 0) may be written as: 

= ntOlog(t/tf,0,) = log(t) + s t o  (22) 

where 

and 

n f o  = 1.0 

are the shift and the slope of the straight lines of 
the relaxation function *(t) vs. log(t) for short 
times, respectively. Equation (22) may be used to 
find the desorption rate constant from the experi- 
mental data. 

Diff usion-Controlled Desorption 

The desorption of macromolecules from a planar 
surface may be a reversible or irreversible pro- 
C ~ S S . ' ~ ~ ' ~ ~ ' ~  For the reversible processes, the desorp- 
tion is described by eq. (5) when the rate of adsorp- 
tion and desorption are infinite, i.e., dI'/dt = 0. In 
the simplest case, when the diffusion coefficient is 
constant [i.e., D(0) = Do = constant, g(0 )  = 11 and 
the equilibrium desorption obeys the linear Henry 
eq. (3a), the relative desorption and the relative sur- 

face concentration expressed in terms of the relative 
time, 7 = t/to, are: 

where G(7) is found from eq. (13). 
Now we consider the desorption process for non- 

linear desorption isotherms. The relative surface 
concentration, c(0, T ) / c ,  and the relative desorption, 
r(7)/r0, for short times (7  + 0), for the Langmuir 
desorption isotherms are given by: 

c(0, 7)/co = 1 - g,(l + b)(47/7r)1/' + 7g:(l + b)2 

X { 1 + 4b[l  - a/(  1 + b)]/[x( 1 + b)] 1 
- 4~"/"g;(l + b)3 (3&')-' 

X { [ l  + 4b(?r(l + b))-' 

x (1 - a(2(1 + b))-')] 

X [ l  + 3b(l  - a(Z(1 + b)-')/(l + b)]  

- 6b2[1 - a/(l + 6) 

+ a2/(6(1 + b)')]/[*(l + b)']} (24a) 

r(d/rO = 1 - g0(47/7r)1/2 + + b)  

X { [l + 4b(l  - a / ( l  + b))] / [ r ( l  + b)] 

- 4b/a) - 4/(3a"2)73/2g~(6b2/7r 

- 3(1 + b)' + (1 + b)' 

X [ ( l  + 4b(*(1 + b))-') 

x (1 - a (2 (1  + b))- ' ) )  

X (1 + 3b(l  - a (2 (1  + b)-')/(l + b ) )  

- 6b2(1 - a/(l + b) 

+ a2/(6(1 + b)'))/(*(1 + b)'))Il (24b) 

where 

is the maximum adsorption on a planar surface, b 
= Kpco is the parameter for the Langmuir desorption 
isotherm, and Kp is the equilibrium constant in the 
equation for the Langmuir desorption isotherm. 

For long times ( t  + co) and arbitrary desorption 
isotherms, the relative surface concentration and 
relative desorption are given, respectively, by: 

where 
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Fd""(t) = ' 

1 .o 

0.8 

r 

n,*log(t) + s,*, n,* = 0.5, 

s,* = -log(t?Z), 0 I t I t&1  

n*,log(t) + s:, s*, = log(t?,i"), 

nzidlog(t) + s z i d ,  t:r1 5 t 5 t& (27a) 

n: = 0.5, t 2 t& 
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Figure 5 The relative adsorption and desorption, r(7)/ 
r, vs. lOg(7) for the diffusion-adsorption obeys the Lang- 
muir adsorption isotherms for the parameter b = 10. 

is the relaxation time for long times, for arbitrary 
desorption isotherms and the parameter a,* = [ d r ( c  
= O ) / ~ C ] / ( I ' ~ / C ~ )  is: 

1 (for linear desorption isotherms) 
(1 + b )  (for the Langmuir 

CG (for the Freundlich l desorption isotherms) 

desorption isotherms) (25c) a,* = 

Now we consider the relaxation function Fd""(t). 
According to eqs. (6b), (24b), and (25b) for arbitrary 
adsorption isotherms, the relaxation function *( t )  
for short times ( t  + 0) is given by eq. (26a), and for 
long times ( t  + 00) is given by eq. (26b), may be 
written as: 

where to( = ( ~ o / c o ) 2 / D o )  is the time characterizing 
the rate of desorption processes for the diffusion- 
controlled model, s,* and s*, are the shift of the 
straight lines of the relaxation function Fd""(t) vs. 
log(t) for short and long times, respectively. For the 
diffusion-controlled model obeying the Langmuir 
desorption isotherm, the relative adsorption, r(7)/ 
r,, and the relaxation function F'eS(7) are shown, 
respectively, in Figures 5 and 6. According to eqs. 

From the analysis of eqs. (27), the slope, n&d, 
and the shift, s z i d ,  are equal to: 

Diffusion-Controlled Desorotion - - I 

Figure 6 The relaxation function p ( 7 )  versus log(7) 
for the diffusion-desorption process obeying the Langmuir 
desorption isotherms for the parameter b = 10 ( b  = K,,c,). 
The slope, n, of a straight line of Fd(7) vs. log(7) is equal 
to no = 0.5 for short times (0 5 7 I = 1.6 10-4t0), is 
equal to nmid = 0.11 for intermediate times ( T Z ~ ~  5 T 

5 &, 7& = 7.9t0), and is equal to n, = 0.5 for long times 
(7 2 &). 
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The time-dependent diffusion-controlled desorp- 
tion may be described for an arbitrary desorption 
isotherms by using eqs. (27) and (28) over a wide 
range of times. 

Below, we consider how the desorption, Ut) ,  may 
approach the equilibrium state, r = 0. Strictly 
speaking, this equilibrium state may only be reached 
at  infinitely long times, i.e., asymptotic t -P co. 
However, if we reduce the range by some relative 
value t (c  --* 0), i.e., if we take the following range 
of the quasi-equilibrium desorption cro, then the 
quasi-equilibrium state becomes realizable for finite 
times, tp. From eq. (25b) for arbitrary desorption 
isotherms in the form of eq. (29a) and for the Lang- 
muir desorption isotherms in the form of eqs. (29b), 
the times, t?, are given by: 

From the preceding analysis it follows that for 
the strong convex adsorption isotherm (i.e., b --+ co) 
the equilibrium state for desorption processes cannot 
be reached for real, finite times. In these cases the 
desorption is an irreversible process. 

where r is the amount of polymer adsorbed ex- 
pressed in mg per cm2 of surface, Xad.layer is the weight 
fraction of polymer in the adsorbed layer, and ppolym 
is the polymer density ( g/cm3). 

The weight fraction of polymer in the adsorption 
layer Xad.Jayer may be found from the Lorentz-Lorenz 
eq~a t ion .~ '  This equation for the molar refraction, 
R,*.layer, of a mixture of solvent and polymer, can be 
written as: 

where xpolym and xsul are the mol fraction of polymer 
(polym) and solvent (sol), respectively, and Mi, p i ,  
and n; represent the molecular weight, density, and 
refractive index of component i, respectively. 

The experimental values for the thickness, dad,layer, 
and the refractive index, nad,Jayer, are found simul- 
taneously by ellipsometric measurements. The molar 
fraction, X,d.layer, and the weight fraction, Xad.layer, of 
polymer in the adsorption layer may be calculated 
by using eq. (32).  Finally, the amount of polymer 
adsorbed, r, is found by using eq. (31 ) . 

RESULTS AND DISCUSSION 
ELLIPSOMETRY 

We have used the ellipsometer to measure the 
amount of polymer adsorbed on a planar surface 
comprised of the crystal Ti02( 001 ) . The thickness 
of the adsorption layer depends on changes in the 
polarization of light due to reflection from the 
smooth interface. The thickness, dad.layer, and the 
refractive index, nad.layer, of adsorption layer were 
found simultaneously by using the following 
equations 25,30: 

where Re ( 6 )  and Im( 6 )  are the real and imaginary 
parts of the phase shift, respectively, X is the wave- 
length of light, dad.layer is the thickness of the ad- 
sorbed polymer layer, nad.layer and ncr are the refrac- 
tive index of the adsorbed layer and the polymer 
solution, respectively. The values of dad.layer and 
nad.layer from eqs. (30) are calculated by using ellip- 
sometric experimental data. The amount of polymer 
adsorbed on a planar surface is given by: 

r dad.layerXpolymPpolym (31 1 

The above theory for the kinetic-diffusion-controlled 
adsorption and desorption was developed in order 
to estimate the time dependence of adsorption and 
desorption over a wide range of times. According to 
the developed theory, the adsorption process for ar- 
bitrary adsorption isotherms is governed by: ( 1 ) the 
adsorption kinetics on the bare surface for short 
times (0  I t I tcrl), ( 2 )  the adsorption kinetics and 
diffusion in the adsorbed layer for intermediate 
times ( tcrl I t I tcr2), and (3 )  diffusion in the ad- 
sorbed layer for long times ( t  > &).  The values of 
the critical times tcrl and tcr2 depend on the structure 
of the adsorbed layer, molecular weight of polymer 
molecules, and interaction between molecules of 
polymer, solvent, and adsorbent. 

The adsorption of water-soluble associative poly- 
mer ( C16H33 end groups with a molecular weight of 
17,000, 51,000, or 100,000) from aqueous solution 
onto the titanium dioxide crystal (001) was studied 
for a concentration range of 3 mg/ kg to 300 mg/ kg 
by ellipsometry with a Rudolph Auto El ellipsometry 
at  room temperature. The adsorption isotherms of 
the associative polymer with different molecular 
weights are shown in Figure 7. The adsorption iso- 
therms are strongly convex for low polymer concen- 
trations (less than 3 mg/ kg) . For intermediate and 
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Figure 7 Adsorption isotherms of the water-soluble as- 
sociative polymer on Ti02 substrate with different polymer 
molecular weights. 

high polymer concentrations (greater than 30 mg/ 
kg) , the adsorption isotherms may be approximated 
by using the Langmuir adsorption isotherms. The 
maximum amounts of polymer adsorbed as a func- 
tion of molecular weights of the associative polymers 
are given in Table I, along with several other char- 
acteristics of the adsorbed layers. 

From the experimental adsorption isotherms one 
can determine the surface area occupied by one 
polymer molecule, urn, in the adsorbed state corre- 
sponding to the plateau: 

where MWpolrm is the polymer molecular weight, 
rk is the amount of the adsorbed polymer on a 
planar surface corresponding to the isotherm pla- 
teau, and NA is Avagadro's number. Table I repre- 
sents the molecular weight dependence of the surface 
urn for the water-soluble associative polymers. The 
value of urn increases from 36 nm2 to 77 nm2 (ap- 
proximately 2.1 times ) as the polymer molecular 
weight is increased from 17,000 to 100,000 (approx- 
imately six times). From this date, it follows that 
the surface coverage density (the degree of packing 
in the adsorbed layer) increases with increasing the 
polymer molecular weights. 

The thickness of the adsorbed polymer layers 
(dad) for c, = 300 mg/kg, obtained by using eq. ( 3 0 ) ,  
is given in Table I. From the experimental values 
and the Lorentz-Lorenz eq. ( 3 2 ) ,  the weight frac- 
tion, Xpolym, of water-soluble associative polymer in 
the adsorption layer is found. As shown in Figure 8, 
the weight fraction of water-soluble associative 
polymer depends on the molecular weight of poly- 
mers and increases with increasing the polymer 
concentration in bulk. For example, for the 100,000 
molecular weight polymer at  the polymer concen- 

Table I 
of Associative Polymers onto Planar TiOt 

Characteristics of the Adsorbed Layers 

MWpd ro, urn dad 

[&?/moll [mdmzl  Lnm21 [nm] What XArch 

17,000 0.79 35.7 11.9 0.11 0.57 
51,000 1.95 43.4 12.6 0.145 0.59 

100,000 2.15 77.2 14.3 0.175 0.69 

M W,, = Molecular weight of associative polymer. 
r: = Amount adsorbed per unit area. 
u, = Area occupied by one polymer molecule. 
dad = Thickness of the adsorbed layer. 
Wt,,., = weight fraction of the associative polymer in the ad- 

XAmh = Parameter characterizing the architecture of the ad- 
sorbed layer. 

sorbed layer. 

tration c, corresponding to the plateau, the weight 
fraction of polymer in the adsorbed layer is approx- 
imately about 0.18; thus, in this case, the adsorption 
layer consists of 18 wt % water-soluble associative 
polymer and 82 wt % water. The weight fractions 
Wtplat for c,  = 300 mg/kg, when the quasi plateau 
is reached for the three polymer samples, are also 
given in Table I. From results in Figure 8 and Table 
I, it follows that the adsorbed layers are compressed 
when the polymer concentration in the bulk in- 
creases from 3 mg/kg to 300 mg/kg. The length, 
LSuf, characterizing the surface area on a planar sur- 
face occupied by one polymer molecule, may be es- 
timated as: 

The ratio, XArch,  equals to 



242 FILIPPOV, SILEBI, AND EL-AASSER 

MWP.,= 100,000 
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characterizes the architecture of the adsorbed 
layer. Table 1 shows the ratio, XArch ,  vs. the 
molecular weight of polymers. The values of 
XArch are calculated from eqs. (34 )  and ( 3 5 ) ,  
and the experimental data in Table I. The  values 
of XArch are listed in Table I,  which show that  
the compressibility of the adsorbed layers in- 
creases with the increase in the molecular weight 
of polymers. 

A 
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Figure 9 The time dependence of the amount of poly- 
mer adsorbed vs. log time for water-soluble associative 
polymer for a wide concentration range of 3 mg/kg to 300 
mg/kg: A-with a molecular weight of 17,000, B-with a 
molecular weight of 51,000, and C-with a molecular 
weight of 100,000. 

The adsorption r( t )  and the function Fad( t )  vs. 
log( t )  are shown in Figures 9 (A, B, and C)  and 10 
(A,  B, and C ) ,  respectively, for the water-soluble 
associative polymer of three molecular weights over 
a wide range of concentrations, from 3 mg/ kg to  300 
mg/kg. According to  eqs. (16) and (17), the relax- 
ation time tz,, characterizing the rate of the ad- 
sorption process, decreases when the polymer con- 
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Figure 11 The time dependence of the relaxation func- 
tion Pd(t) vs. log(t) for water-soluble associative polymer 
for 3 mg/kg polymer concentration: A-(with a molecular 
weight of 17,000) (I) the kinetic-controlled adsorption pro- 
cess, no = 1.11; 0 < t < terl, tcrl = 9.4 min; (11) the kinetic- 
diffusion-controlled adsorption process, n = variable; t,,, 
- < t I tcr2, tCe = 46.9 min; and (111) the diffusion-controlled 
adsorption process, n, = 0.57; t 2 tCrz; B-(with a molecular 
weight of 51,000) (I)  the kinetic-controlled adsorption pro- 
cess, no = 1.17; 0 I t I tcrl, tcrl = 5.3 min; (11) the kinetic- 
diffusion-controlled adsorption process, n = variable; tcrl 
- < t 5 tcrzr tcr2 = 37.3 min; and (111) the diffusion-controlled 
adsorption process, n, = 0.53; t 2 tcr2; and C-(with a 
molecular weight of 100,000) (I) the kinetic-controlled ad- 
sorption process, no = 1.15; 0 s t I tcrl, tcrl = 3.7 min; (11) 
the kinetic-diffusion-controlled adsorption process, n 
= variable; tCrl 5 t I tcr2, tcr2 = 66.3 min; and (111) the dif- 
fusion-controlled adsorption process, n, = 0.61; t 2 tcr2. 

centration increases. Therefore, the rate of the ad- 
sorption process for the water-soluble associative 
polymer decreases when the polymer concentration 
increases from 3 mg/kg to 300 mg/kg, as shown in 
Figures 9 and 10. The experimental data in Figures 
10 and 11 show that for short times and low con- 
centrations of water-soluble associative polymers 
that the slopes, no, of the straight lines [of the re- 
laxation function Fad ( t ) vs. log ( t ) ] are approxi- 
mated to 1.0. In order to analyze these results, one 
must consider that the overall adsorption process is 
governed by the step with the least rate, and ac- 
cording to eqs. (8a) and ( 15b), for the kinetic-con- 
trolled step the adsorption is proportional to t (time) 
and the rate of adsorption is constant; for the dif- 
fusion-controlled step, the adsorption is proportional 
to t 1/2 and the rate of adsorption is proportional to 
tP1I2.  Therefore, according to the experimental data 
in Figures 10 and 11 and eqs. ( l l a )  and ( I l b ) ,  the 
rate-determining step of the overall adsorption pro- 
cess for short times (0  I t I tcr l )  is the kinetic- 
controlled step. From the experimental data shown 
in Figures 10 (A,  B, and C )  and 11 (A,  B, and C ) ,  
it also follows that for long times and high concen- 
trations of water-soluble associative polymer con- 
centrations the slopes, n ,  , of the straight lines are 
approximately 0.5. For the intermediate times ( tcrl 
s t I t c r 2 ) ,  the rates of the kinetic-controlled step 
and the diffusion-controlled step are comparable; 
therefore, the rate-determining step is the kinetic- 
diffusion-controlled step. According to eqs. ( 17), for 
long times ( t  2 tcr2) the rate of the adsorption ki- 
netics is greater than the rate of the adsorption pro- 
cess because of the diffusion; therefore, the rate-de- 
termining step for long times is the diffusion-con- 
trolled step. Thus, the kinetic-diffusion-controlled 
adsorption takes place for water-soluble associative 
polymer concentrations from 3 mg/kg to 30 mg/kg 
over a wide range of times, as shown in Figures 10 
(A,  B, and C )  and 11 (A ,  B, and C )  . Diffusion-con- 
trolled adsorption takes place a t  water-soluble as- 
sociative polymer concentrations greater than 30 
mg/ kg over a wide range of times. 

From the experimental data presented in Figures 
10 ( A ,  B, and C )  and 11 (A ,  B, and C ) ,  and eqs. 
( l l ) ,  (12 ) ,  and (16) through (17),  the following 
values, characterizing adsorption processes for the 
water-soluble associative polymers, are calculated 
and listed in Table 11: ( 1 ) the adsorption rate con- 
stant, Kad, ( 2 )  the diffusion coefficient in the bulk, 
Do, and in the adsorbed layer, D [  O (  c )  1 ,  and ( 3 )  the 
activation energy in the adsorbed layer, Q .  The ad- 
sorption rate constant decrease with increasing the 
molecular weight of the polymers due to the greater 
mobility of molecules with low molecular weights. 
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Table I1 
Process of Associative Polymer onto TiOz 

Characteristics of the Adsorption 

M Wpol K " d  Do Q 
[g/mol] kg/(mg-s)] (cm2/s)] [kJ/mol] 

17,000 1.26 0.63 10.6 
51,000 1.05 0.42 11.8 

100,000 0.79 0.33 12.3 

IPd = Adsorption rate constant. 
Do = Diffusion coefficient in bulk. 
Q = Activation energy. 

From the data in Table I1 the diffusion coefficient 
in the bulk, Do, is given by: 

= - 4.67 - 0.36 10g(MWp,,l) (36)  

The proportionality of Do to MW-0.36 is in ac- 
cordance with the phenomenological theory for 
polymer solutions.32 The  concentration dependence 
of the diffusion coefficient, D[ O( c)  1, in the adsorbed 
associative polymer layer on the titanium dioxide 
crystal (001 ) is shown in Figure 12. The diffusion 
coefficient in the adsorbed layer decreases signifi- 
cantly when the fraction of the total surface coverage 
increases due to  strong interactions between mole- 
cules of water-soluble associative polymer and water 
in the adsorbed layer. As shown in Table 11, the 
activation energy, Q, increases weakly (about 25% ) 
as the polymer molecular weights increase almost 
one order of magnitude; this results from interac- 
tions between molecules in the adsorbed layer. Based 
on the experimental results given in Tables I and 
11, the following eqs. (37) through (42)  may be used 
to estimate the values characterizing the adsorption 
processes for the water-soluble associative polymers 
on the titanium dioxide planar surface: 

r$(mg/m2)  = -7.6 + 2 log(MWPoI) 

dad(nm) = 62.1 - 24.5 log(MW,,I) 

+ 3[log(MWp01)l2 

WQ,iat( % )  = -27.5 + 9.1 log(MWp,l) 

Kad ( kg/mg. s)  

= [3.82 - 0.6 l~g(MW,,l)] 

D[ O(c) 1 = D,exp [ - O(c) QIRTI , 

o = r(c)/r: 
Q(kJ/mol) = 1.22 + 2.22 log(MW,,I) 

Next, we consider the desorption process for the 
water-soluble associative polymers with different 
molecular weights. The time dependence of desorp- 
tion, T'( t ) ,  and the relaxation function, Fdes ( t )  , vs. 
log( t )  are shown in Figures 13 (A, B, and C )  and 
14 (A, B, and C ) ,  respectively. The adsorption iso- 
therms, as  shown in Figures 13 (A, B, and C ) ,  are 
weakly convex for polymer concentrations greater 
than 30 mg/ kg and are strongly convex for polymer 
concentrations less than 30 mg/ kg. According to 
the above theory for the kinetic-diffusion-controlled 
desorption process, the adsorption is a reversible 
process for weakly convex adsorption isotherms and 
is an irreversible process for strongly convex ad- 
sorption isotherms, shown in Figures 13 (A, B, and 
C) .  From the experimental data shown in Figures 
14 (A, B, and C ) , it follows that for short times the 
slope, n,* , of the straight line [ the relaxation func- 
tion Fdes( t )  vs. log( t ) ]  are approximately 1.0. The 
overall desorption process is governed by the step 
with the least rate. According to eqs. (20a) and 
(24b), for the kinetic-controlled step the desorption 
is proportional to t (time) and the rate of desorption 
is constant; for the diffusion-controlled step, the de- 
sorption is proportional to  t ' 12  and the rate of de- 
sorption is proportional to 1 / t  ' I 2  for short times (0  
- < t 2 t&, ) . Therefore, according to eqs. (21 ) and 
( 22 ) , the rate-determining step of the overall de- 
sorption process for short times is the kinetic-con- 
trolled step in the case of the weakly convex ad- 
sorption isotherms. From the experimental data in 
Figures 14 (A,B,C), it also follows that ( a )  t& --* 
0 and ( b )  for intermediate times ( t  I t&)  the slope, 
rigid, is approximately 0.18 and for long time ( t  
2 t&) the slope, n*, , is of about 0.5. According to 
eqs. (25)  through (271, the desorption process is 

Polymer Concentration,(C),rng/kg 

Figure 12 The dependence of the diffusion coefficient 
of the water-soluble associative polymers in the adsorbed 
layer [ D ( c ) ]  vs. polymer concentrations with different 
polymer molecular weights. 
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Figure 13 The time dependence of the amount of poly- 
mer desorbed vs. log time for water-soluble associative 
polymer for a wide concentration range of 3 mg/kg to 300 
mg/kg: A-with a molecular weight of 17,000, B-with a 
molecular weight of 51,000, and C-with a molecular 
weight of 100,000. 

controlled by the diffusion in the adsorbed layer for 
t 2 tX1.  The slopes nzid and n*, characterize the 
rate of the desorption when the desorption process 
is controlled by the diffusion in the adsorbed layer. 
As shown in Figures 13 (A,B,C) and 14 (A,B,C),  
the rate of the desorption process for intermediate 
times ( t  I t&) is much less than that for long times 
( t  2 t&) .  Equations (22 ) ,  (27) ,  and (28)  may be 
used to predict time-dependence desorption over a 

, A  

Diffusion-Controlled Desorption 

cO=300rng/kg 
MW,,l=17,000 

-3: , 1 1 , , , , , , , , , , , , , , , , 1 , , , , , , , , , , , , ,  I , ,  , , I 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
LOG(t,sec) 

B 

Diffusion-Controlled Desorption - - 

c,=300mg/kg 
MWPI=51 ,000 

C 
Diffusion-Controlled DesorDtion 

LOG( t ,sec) 

Figure 14 The time dependence of the relaxation func- 
tion P ( t )  vs. log(t) for water-soluble associative polymer 
for 300 mg/kg polymer concentration: A-(with a molec- 
ular weight of 17,000) the diffusion-controlled desorption 
process, nZid = 0.15; B-(with a molecular weight of 
51,000) (IIIa) the diffusion-controlled desorption process, 
nZid = 0.18; t 5 t&, t& = 14 h; and (IIIb) the diffusion- 
controlled desorption process, n z  = 0.53; t > t&; and C- 
(with a molecular weight of 100,000) (IIIa) the diffusion- 
controlled desorption process, nZid = 0.22; t I &, t& 
= 2.8 hs; and (IIIb) the diffusion-controlled desorption 
process, na. = 0.5; t 2 t&. 
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wide range of times for arbitrary adsorption iso- 
therms. 

It should be noted that the rates for the adsorp- 
tion and desorption processes for the convex ad- 
sorption isotherms are significantly different. The 
times for establishing the equilibrium states for these 
processes are also significantly different. Figure 5 
shows the time dependence of the adsorption for the 
Langmuir adsorption isotherms. From data in Figure 
5 and eqs. (18) and (29), it follows that  the time to 
establish the equilibrium state for the adsorption 
processes, t+d, is equal to 29t0 (t = 0.01), and the 
time to establish the equilibrium state for the 
desorption processes, tp, is equal to  3.8 X 105t0 
( E  = 0.01). Thus, the ratio of t;”’/t?d = 1.3 X lo4. 
From the preceding analysis it follows that for the 
strongly convex adsorption isotherms, the adsorp- 
tion process is irreversible. 

CONCLUSIONS 

We have developed a theory for the kinetic-diffu- 
sion-controlled adsorption and desorption of poly- 
mers on planar surfaces. Equations are derived to  
calculate the parameters characterizing these ad- 
sorption and desorption proceses. Using a theoretical 
approach and analysis of the experimental data, it 
is shown that the adsorption processes for arbitrary 
adsorption isotherms on a planar surface are gov- 
erned ( a )  by the kinetics of polymer adsorption for 
short times or low polymer concentrations (less than 
30 mg/ kg) , ( b )  simultaneously by the kinetics of 
polymer adsorption and diffusion of polymer mol- 
ecules in the adsorbed layer for intermediate times 
or midrange polymer concentrations (greater than 
10 mg/kg and less than 100 mg/kg), and ( c )  by the 
diffusion of polymer molecules in the adsorbed layer 
for long times or high polymer concentrations 
(greater than 100 mg/kg). The equations are de- 
rived to calculate the times needed to  establish the 
equilibrium states for the adsorption and desorption 
processes. It is shown that for the strongly convex 
adsorption isotherms the equilibrium state for de- 
sorption processes cannot be reached for real finite 
times; therefore, in these cases the adsorption is an  
irreversible process. 
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